
J .  Fluid Mech. (1 996), uol. 3 14, pp.  21-52 
Copyright 0 1996 Cambridge University Press 

27 

Flow through a perforated surface due to 
shock-wave impact 

By B. W. SKEWS' AND K. TAKAYAMA' 
School of Mechanical Engineering, University of the Witwatersrand, Johannesburg, South Africa 

a Institute of Fluid Science, Tohoku University, Sendai, Japan 

(Received 15 May 1995 and in revised form 17 November 1995) 

The factor which is of prime importance in influencing the shock reflection geometry, 
and resulting pressures, following impingement of a shock wave on a porous surface 
is the velocity of the flow into the surface. A set of experiments has been conducted, 
using holographic inferometry in a shock tube, on the impingement of a shock wave 
on a surface covered with slits, over the full range of shock incidence angles from 0 to 
90". Inverse shock pressure ratios of 0.4, 0.5 and 0.7 were used, and detailed 
characterization of the flow fields determined. A number of methods are used to infer 
the inflow into the surface, and measurements are also conducted on the downstream 
side of the slit plate in order to establish the pressure ratio across the plate. The tests 
include choking of the flow through the slits. Shock reflection angles are found to be 
depressed compared to reflection from an impervious wall for cases of regular 
reflection, but are similar in the case of Mach reflection with the incident wave near 
glancing incidence. Contrary to assumptions made in previous work it is shown that 
for wall angles from zero up to approximately 60" the inflow to the plate is inclined to 
the surface at about 17" and then tends to straighten out until, for normal shock 
reflection, the flow is also normal to the plate. It appears that this behaviour is linked 
to the separation of the flow at the inlet to the pores of the model, due to shock wave 
diffraction. The maximum value of the absolute inflow velocity occurs in the region of 
transition from regular to Mach reflection. A series of starting vortices is shed on the 
underside of the slit and is found to follow a path nearly normal to the plate. These 
vortices lie along a contact surface whose motion is compatible with the strength of the 
shock wave transmitted through the plate. 

1. Introduction 
It is becoming increasingly apparent from a number of experimental measurements 

over the past decade that the properties of a reflecting surface have a significant 
influence on the reflection geometry of shock waves striking such surfaces, and hence 
on the pressures that are generated. The effects of surface roughness and the presence 
of dust layers have been reasonably well characterized (Takayama, Onodera & Gotah 
1982; Reichenbach 1985; Ben-Dor et al. 1987; Suzuki & Adachi 1987), particularly as 
they affect the transition from regular to Mach reflection. In general the effect is a 
reduction in the triple-point trajectory angle resulting in a smaller wedge angle for 
transition to Mach reflection, ascribed to either viscous (Ben-Dor et al. 1987) or 
inviscid (Reichenbach 1985) effects. In some cases with a dust layer, a second reflected 
shock appears, the first arising from the top surface of the dust layer and the second 
from the interface between the dust layer and the supporting wall. Careful 
experimentation in some of these reports has shown that the process is not pseudo- 
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stationary, in the sense that triple-point trajectories do not emanate from the leading 
edge of the wedge although the trajectories are straight lines (Reichenbach 1985). In the 
case of guttered wedges (Adachi, Kobayashi & Suzuki 1992) it is shown that an 
additional dimensionless parameter L / x  comes into play, where x is a characteristic 
dimension of the gutter, such as its width, and L is the distance the incident shock wave 
has moved up the wedge. With large L / x  the triple-point trajectory angle approaches 
that of a smooth wall and the reflection approaches local self-similarity. A short review 
of the limited data available on interactions with porous surfaces has recently been 
given by Skews (1995). It is already clear that the effects can be even more marked than 
for rough surfaces. Besides having application to surfaces covered with porous 
material, it is also of interest for more complete understanding of blast propagation 
over permeable soil, snow, and even grasslands or forest. 

The reason why experiments on the transition of shock reflection on a smooth wedge 
show the persistence of regular reflection beyond the theoretically expected limit has 
been ascribed to the development of a boundary layer on the wall immediately behind 
the shock (Hornung & Taylor 1982). This is relevant to the present investigation in 
that, in a frame of reference fixed at the reflection point, the boundary layer has a 
negative displacement thickness and the effect is thus of a mass inflow into the wall, so 
that reflected shock waves can exist which do not have to turn the flow parallel to the 
wall, as required in an idealized inviscid calculation. 

Early work conducted on porous surfaces was done predominantly for the case of 
one-dimensional flow with the shock wave striking the surface normally. Beavers & 
Matta (1972) investigated the strength of the reflected wave for three different porous 
materials. Their theoretical model assumed that no shock wave is transmitted into the 
material and that the flow through the material is steady. An allowance was made for 
a thin inlet and outlet region, a few pore diameters in extent, where the flow adjusts to 
the effects of area change, and before frictional effects can have an effect. As will be 
seen in the present study the effects of a vena-contracta as the flow enters the material 
can be significant. The flow through the bulk of the material was assumed to follow an 
extended Darcy equation. The predictions are generally good considering the dramatic 
assumption of the neglect of transient effects. 

In the late 1970s and early 1980s attention was predominantly focused on flows 
through materials with deformable skeletons (predominantly polyurethane foams) 
because of the interesting property of pressure amplification if a foam material is 
positioned against a rigid wall and is struck by a shock wave (Gelfand, Gubonov & 
Timofeev 1983; Govzdeva et al. 1986). These treatments assume the interface between 
the porous material and the upstream gas to be impervious, with the weakening of the 
reflected wave being caused by the movement of the interface. In similar tests Skews 
(1991) presented some evidence of slight inflows for these materials, and suggested that 
the mechanism for the development of the reflected wave was a combination of wave 
reflection from the cell walls at the interface, and frictional effects and wave reflections 
within the body of the material resulting in pressure signals being propagated back out 
through the interface. These two mechanisms will be discussed further subsequently. 
The existence of the gas inflow in these one-dimensional cases was subsequently 
confirmed through numerical studies (Baer 1995) whose model closely predicted the 
experimental results. Inflows were of the order of 2 m s-l through the interface between 
the gas and the foam, for an incident shock with a Mach number of 1.4 impacting on 
a polyurethane foam with a density of 32.5 kg mp3. The interface itself is driven down 
the shock tube at about 55 m spl. 

One-dimensional studies by van der Grinten, van Dongen & van der Kogel (1985) 



Flow through a perforated surface due to shock-wave impact 29 

using a stiff porous matrix consisting of sand particles bonded together and saturated 
with air, considerably reduced the effects of skeleton motion which dominate the tests 
described above. They found that the wave transmitted into the material was fully 
dispersed with increasing rise time as the wave penetrated further into the material, and 
that the flow behaviour could be adequately described by a frictional model based on 
the Forcheimer equation. Levy et al. (1993), however, found that by using rigid 
materials with a much coarser pore structure (e.g. 10 pores per in.) the leading edge of 
the transmitted wave remained as a shock which decreased in strength as the material 
was penetrated. The remainder of the wave had the dispersed structure noted by 
van der Grinten et al. (1985). They thus proposed that there were essentially two time 
(or length) scales operating: a short time scale which controlled the initial reflection 
process through the reflection, diffraction, and re-reflection of wavelets within the pore 
structure feeding perturbations back into the external flow thereby strengthening the 
reflected wave, and a longer time scale phenomenon due to frictional effects as the flow 
was dominated more and more by the diffusion of viscous effects throughout the 
matrix. The current study deals with the first of these. 

The earliest quantitative two-dimensional study undertaken of shock-wave impact 
on a perforated surface is that of Friend (1958). A thorough investigation was 
conducted of the reflection of a shock wave from a perforated plate situated at angles 
of 45", 60", 75" and 90" to the direction of shock motion, all corresponding to regular 
reflection conditions. Circular holes in. in diameter were drilled over the surface of a + in. thick plate with a spacing between holes giving 50 YO open area. Shock pressure 
ratios from 2 to 10 in steps of 2 were used, which in all cases but the lowest resulted 
in the holes choking. The evidence for this was the typical shock diamond pattern of 
a supersonic jet, downstream of the holes. This feature gave the author the additional 
boundary condition of sonic conditions at the hole from which to develop his 
theoretical analysis. Allowance for the vena-contracta was made by using an 
empirically determined contraction coefficient (referred to as a discharge coefficient), 
which was found to have a value of about 0.93 for the majority of the tests. 
Furthermore, because of the relative thinness of the plate he also assumed that the 
tangential component of velocity is identical on both sides of the plate, i.e. that there 
is no tangential momentum interchange. These assumptions, together with the use of 
oblique shock relations, enabled theoretical predictions to be made of the phenomena 
and these were found to predict the experimental measurements with a fair degree of 
accuracy. His tests also showed no effect of Reynolds number. The current test 
boundary conditions are somewhat different from those of Friend, resulting in a wider 
base of experimental information. Firstly, weaker shocks were chosen so that the holes 
did not always choke, and secondly the full range of wall angles is investigated so that 
both regular and Mach reflection occur. Somewhat narrower openings were also used 
in order to minimize the lack of self-similarity noted above from the work of Adachi 
et al. (1992), typical values of L / x  being about 60. 

Other early two-dimensional studies were largely aimed at the development of 
methods for reducing reflected wave strength. Cloutier et al. (1971) attempted to 
attenuate the wave resulting from a 0.303 bullet reflecting off an adjacent surface so 
that the wave would not interfere with the bullet wake. A variety of materials were 
tested and it was found that by correctly choosing the thickness and density of the 
material the reflected wave could be virtually eliminated. Guy (1973) investigated 
shock-wave attenuation in a sudden enlargement in a duct with an absorbent lining. 
Pressure measurements on the axis of the tube showed elimination of the high 
frequencies, resulting from the removal of the multiple transverse waves. 
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FIGURE 1. Regular reflection over a surface with inflow, in a frame of reference 
fixed in the point of reflection. 

Clarke (1984) undertook a number of theoretical studies of oblique reflection off a 
porous surface, restricted to very weak waves. He assumed that the flow in the porous 
material followed Darcy's law with the interaction resulting in a reflected expansion 
wave terminated by a shock wave. This model is based on the premise that the material 
acts by swallowing or regurgitating air until such time as the pressures within the 
material are uniform and equal to the external air pressure. The expansion wave 
implies an inflow velocity greater than the component of velocity normal to the surface 
that is induced behind the incident wave. It was shown that flow in the material can 
be adequately described by using a momentum equation that combines Darcy's law 
with an inertia term. Bray (1984) conducted experiments with weak waves ( M  = 1 .OS) 
using slabs of polyurethane foam to compare with Clarke's predictions. It was found 
that the presence of the porous material inhibits the formation and growth of a 
reflected shock, and gives rise instead to a reflected continuous compression wave. He 
also showed that the effects of surface openness and foam depth are significant. 

The current work is an extension of that of Onodera & Takayama (1990a, b). They 
examined the reflection of a plane shock wave from the surface of a slit wedge. Their 
main interest was in the transition conditions from Mach reflection to regular reflection 
over a wide range of incident Mach number conditions. This was done by running 
successive tests with increasing wedge angles from zero until regular reflection was 
obtained. For the stronger shocks ( M  = 3 )  and a surface perforation ratio of 0.4 it was 
shown that the transition angle was decreased by about 10" from that for a smooth 
rigid wall. These authors recognized that the flow behind the reflected shock may be 
unsteady because of wall suction, but for purposes of analysis assumed that in the 
vicinity of the reflection point the flow could be treated as quasi-steady. It is interesting, 
however, that they found the Mach stem to grow linearly with time in spite of its 
possible attenuation due to the expansion waves from the slits and thus the experiments 
may be assumed to be conducted at a high enough value of L / x  to be treated as being 
quasi-steady. The steady-flow analogue in the corresponding shock-fixed coordinates 
is then as indicated in figure 1. The shock polar analysis corresponding to this flow was 
then used by these authors with the further assumption that, in plate-fixed coordinates, 
the flow into the plate is normal to the surface. The validity of this assumption will be 
dealt with later. An empirical matching coefficient was found to be necessary to get 
agreement between experiment and the shock polar analysis. 
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An experimental study of the general gasdynamic behaviour following shock-wave 
impact on a porous wedge has recently been reported (Skews 1994). Specimens of rigid 
porous material (silicon carbide and alumina) and a range of wedge angles were tested 
over a range of Mach numbers from 1.1 to 1.7. The external flow field was determined 
through schlieren photography and the conditions within the material inferred from 
wall pressure measurements. Substantial changes in reflected wave angles compared 
with smooth walls were noted, particularly in the case of regular reflection. For 
example with an inverse shock pressure ratio (upstream pressure/downstream 
pressure), 6 = 0.7, and a wedge angle of 40" the reflection angle decreases by about 25". 
Some tests at M = 1.51 showed the triple-point trajectory to be a straight line within 
the accuracy of measurement. The general appearance of the external flow was very 
similar to that for a rough, but impervious, wall. 

Kobayashi, Adachi & Suzuki (1995) conducted a theoretical and experimental 
investigation of shock-wave impact on porous surfaces with the emphasis on regular 
reflection conditions. Two different porous layers were tested, one consisting of 
spherical glass particles with a bed porosity of 44%, and the other a foam rubber with 
a porosity of 98%. Data were presented of the reflected shock angle for varying 
incidence angles and Mach numbers of 1.2 and 1.41. Two types of analysis were done, 
in both cases assuming that the flows are pseudo-stationary. In the first, flows within 
the porous material were ignored and calculations done for arbitrary values of S (the 
'sink effect' shown in figure 1) to see whether this could account for the observed wave 
angles. It was found that there were experimental results which could not be accounted 
for in this manner as the values of 6 would be unacceptably large. The second approach 
was to examine the two limiting cases for inflow, such as done by Skews (1991) for the 
one-dimensional case. These limits are for 6 = 0 corresponding to a porosity of zero 
(conventional regular reflection from an impervious wall), and an infinitely weak 
(sonic) reflected wave corresponding to unity porosity. It was found that the 
experimental results for the 0.98 porosity material corresponded well with this latter 
case. 

From a theoretical point of view, the recent work of Li, Levy & Ben-Dor (1995) is 
of significance. They analysed the regular reflection of a shock wave from a porous 
surface, also on the assumption that the process is pseudostationary as did Clarke, 
which therefore could be treated as a stationary reflection pattern in a steady 
supersonic flow. They assumed that in the vicinity of the point of reflection, where 
measurements are made, there is no momentum and energy interchange between the 
solid phase and the gas, and that these effects only become significant when the gas has 
propagated well into the pores, and there are thus minimal forces acting on the surface 
layer. A transformation is employed which treats the gas in the pores only, following 
which the usual shock relations are applied. The comparison of their results with the 
unsteady experimental data of Skews (1994) and Kobayashi et al. (1995) showed very 
good agreement, thereby indicating that the similarity assumption is a good 
approximation. The analysis in the present paper is also done using this assumption. 

The view presented by Li et al. that the reflection process in the vicinity of the 
reflection point is not influenced by the frictional effects within the body of the material 
contrasts with the assumption (van Dongen et al. 1993) that when a shock wave hits 
a high-porosity foam there is almost no instantaneous reflection, and that the reflected 
wave is generated from within the body of the material because the gas that enters the 
foam decelerates due to friction. Which of these effects is dominant will probably 
depend on the nature of the surface as well as the porosity. 

From the above it is clear that there are a number of effects which influence the 
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reflection process of a shock wave from a permeable surface. These are geometrical 
surface roughness and pore size effects, mass inflows into or through the material due 
to porosity, and bulk flow effects in the body of the material which feed influences back 
to the surface. This paper studies flows in the vicinity of the surface in detail, with an 
idealized geometry consisting of a plate with transverse slits. 

2. Experiments 
Tests were conducted with shock waves having nominal inverse pressure ratios 

of 5 = 0.4, 0.5 and 0.7, corresponding to Mach numbers of 1.51, 1.36, and 1.17 
respectively, and over the full range of wedge angles from 0 to 90". Owing to the 
experimental set-up and scatter, average Mach numbers and standard deviations 
were 1.540 (0.006), 1.382 (0.009), and 1.185 (0.009). 

The main experimental facility used was the diaphragmless shock tube at the Shock 
Wave Research Center of the Institute of Fluid Science, Tohoku University. This unit 
has a low-pressure section with a cross-section of 60 x 150 mm. The high-pressure 
section is a concentric chamber situated around the driven section and connected to it 
via a flexible rubber diaphragm which acts as a valve at the inlet to the driven tube. This 
valve is controlled by the pressure in a separate chamber whose pressure is released by 
a bursting disk (Yang, Onodera & Takayama 1994). This tube gives a very good 
reproducibility in Mach number of about 0.2% and has the added advantage of not 
leaving diaphragm fragments in the tube. Experimental scatter in the current tests is 
slightly larger than this figure due to the incorporation of some earlier Mach reflection 
tests done in 1986 by Onodera using a conventional shock tube. Nitrogen was used as 
the test gas. 

The models used are essentially those used previously by Onodera & Takayama 
(1990a, b) for their study on slit wedges. They consist of a circular arc holder to which 
different 2.25 mm thick plates can be attached. The plates are accurately machined 
using wire cutting, with a series of slits as indicated in figure 2. The holder is attached 
to the two acrylic windows of the shock tube and the whole window/model assembly 
is rotated in order to change wedge angle. Two test plates were manufactured and 
tested. The first, which will be referred to in this paper as the coarse (C) model, had 35 
slits, each 1 mm wide, separated by 1.5 mm wide solid bars, giving an open area ratio 
of 40% over the slit surface, and the second had 58 0.5 mm slits separated by 1 mm 
bars. This model thus has a 33% open surface area and is referred to as the fine (F) 
model. Photographs of the models are given in Onodera & Takayama (1990b). A 
narrow rim runs down the edges of the plates connecting the bars in order to retain 
structural integrity. As noted by these authors this rim gives rise to a reflected wave in 
a different plane to that of the porous surface and care must be taken in measuring up 
the photographs. The effect of this wave distortion was found to reduce accuracy of 
measurement in the present work and future studies should avoid this effect by, for 
example, countersinking the ribs into the acrylic window material. The original models 
used by Onodera & Takayama were 2.25 mm thick but were plastically deformed 
under conditions of high shock loading. A second set of models were made with the 
same plate thickness but with a narrow stiffening web along the lower outside edges. 
It is for this reason that in the photographs published in their papers, the models 
appear proportionately much thicker than those in this paper. It should be noted that 
there are errors in the information given on the model sizes in the above references, the 
thickness t referring to the web rather than the plate thickness, and the slit width being 
1 .O rather than 1.5 mm for the second model. For the present tests these stiffening ribs 
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FIGURE 2. Design of the test model (dimensions in mm). 

8 
Stem location 

FIGURE 3. The triple-point trajectory. Stem length and location are non-dimensionalized with 
respect to the wedge length (Onodera & Takayama 1990b). M = 1.53, 19, = 25.5'. 

were removed in order to make the full transmitted flow visible immediately below the 
surface of the plate, with the severe loading conditions being alleviated by running 
the tube at lower initial pressures: 1 bar for [ = 0.7, 0.5 bar for 6 = 0.5, and 0.3 bar 
for 6 = 0.4. 

Owing to the method of mounting of the plates there is a short length (1 1.5 mm) of 
unperforated material between the leading edge of the wedge and the start of the 
slits (figure 2). The effects of this were studied by Onodera & Takayama (1990b) and 
were established to be small under conditions of Mach reflection. Figure 3 shows their 
results for their measurement of the Mach stem length for a Mach 1.51 shock wave and 
a wedge angle of 26". The stem length and shock location are non-dimensionalized with 
respect to the wedge length. It is seen that after an initial formation distance the triple 
point trajectory becomes straight. It was thus concluded that the wave system can be 
treated as being self-similar in time with an effective wedge apex upstream of the actual 
apex. This result is utilized in $4 to establish the velocity of propagation of the wall 
shock along the wedge surface for Mach reflection situations. This leading-edge 
influence is, of course, not a problem in regular reflection situations where the flow in 
region ii (figure 1) is supersonic with respect to the reflection point, as the reflection 
point then has no knowledge of the existence of the wedge apex. 
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FIGURE 4. Typical interferograms. (a) M = 1.37, 8 ,  = Yo, C; (b) M = 1.18, 0, = 20.2", F; (c) M = 
1.54, H,, = 60°, C;  (d)  M = 1.54, 0, = 60", F ,  ( P )  M = 1.39, 0, = 45", C; ( f )  M = 1.38, 0, = YO", C. 
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The earlier tests of Onodera & Takayama covered wedge angles from zero up to 
about 45", and thus dealt primarily with Mach reflection conditions, as their interest 
was largely in the effects of slits on the reflection transition process. Some of these 
previous results are included in the present analysis. Whilst some tests were repeated 
in this lower range the new tests were mainly in the regular reflection region, all the way 
up to the case of normal reflection corresponding to a nominally one-dimensional flow 
situation. 

Double-exposure holographic interferometry, as implemented by Takayama (1 983), 
was employed to record the wave interaction patterns. Although the fringes are 
isopycnics, they were not used in the present work to establish quantitative values of 
density, partly because of the very complex flows which makes it difficult, if not 
impossible, to count fringes. However, they were beneficial in improving the definition 
of the wavelets in the flow arising from the slits and in distinguishing between regions 
of low and high density gradients. Typical reconstructed images are shown in figure 4 
for Mach reflection (a,  b), regular reflection (c,  d, e),  and normal reflection ( f ) .  

3. Characteristics of the flow 
The basic features of the flow are identified in figure 5, although as will be noted from 

the interferograms there are differences in the flows, depending both on Mach number 
and on wedge angle. Thus in this figure, which is a tracing of figure 4(e) ,  there are three 
shock waves: the incident wave (I), the reflected wave (R) and the transmitted wave 
(T). In the case of Mach reflection there is the additional Mach stem shock (figure 4 4  
b). There are five major flow regions. First the unperturbed region (0) ahead of the 
shock, both above and below the plate, and secondly the uniform and undisturbed 
region (i) behind the incident shock. Then there is the disturbed region (ii) between the 
plate and the reflected wave, which is directly influenced by the flow through the plate 
and is traversed by the weak waves arising from the slits. There are two regions (iii) and 
(iv) below the plate separated by a contact surface. Region (iii) contains gas which has 
passed through the slits, and region (iv) is the gas engulfed by the transmitted shock 
wave as it is driven ahead by the contact surface. 

3.1. The ,flow above the plate 
The flow between the reflected wave and the surface of the plate is characterized by 
reflected wavelets arising from the interaction of the point of reflection with the surface. 
Examination of an interference fringe passing through these wavelets (e.g. figure 4e) ,  
show a zigzag pattern corresponding to a series of sharp-fronted compression fronts 
(shocklets) followed by expansion waves. The source of this pattern is easily 
understood from an examination of literature on the interaction of a shock wave with 
a branched duct or a bend in a duct (e.g. Skews 1971), which is a similar situation to 
the shock entering a slit in the present case, as well as Adachi et al.'s (1992) 
photographs on guttered wedges. A schematic of the expected flow in the vicinity of a 
slit is shown in figure 6, which is constructed from the above studies coupled with the 
numerical simulations done by Onodera & Takayama (1994), a similar schematic of 
Friend (1958), and the results of the current study. The shocklet results from the 
reflection of the incident shock wave from the far side of the slit and the expansion 
wave from the diffraction of the incident shock at the leading edge of the slit (one 
example is shown dotted), as well as the expansion of the shocklet flow in space (i.e. 
as a blast wave). Other waves resulting from flows on the lower side of the plate may 
enter this upper flow field through the slits and vice versa. Most of these re-reflected 
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FIGURE 5. Characteristics of the flow. The arrows identify the wavelets and vortices arising from 
the loth, 15th and 20th slit. 

FIGURE 6. Schematic of the flow through the slits, with arrows showing the flow direction in a 
frame of reference fixed in the plate. 

waves are not shown in the diagram as the flow clearly becomes very complex. The flow 
in the vicinity of the slits will be discussed in more detail in $5 .  

Careful analysis of the interferogram enables the slit which is responsible for each of 
the shocklets to be identified. In figure 5 this is done for the loth, 15th and 20th slit, 
with the incident wave just having reached the far edge of the 25th slit. Inferences 
regarding the gas inflow motion will be made later using this information. It is evident, 
however, that the oscillations in density due to these wavelets is small (of the order of 
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one fringe shift), and the approximation may be made that the background density 
along each fringe is relatively uniform. The positions of the slits can be identified on 
the interferograms by the small semi-circular fringe patches on the upper surface of the 
plate. There are two of these from each slit, corresponding to the two corners of the 
slit, and they are visible because of the high flow gradients around these corners. 

It is noted in the cases of Mach reflection that the Mach stem is not perpendicular to 
the wall. Whilst the tip of the wave is changing all the time due to successively striking 
a rigid wall and then a slit opening, the localized effect soon smooths out as the effects 
propagate up the stem. For low wall angles the Mach stem tends to lag the incident 
wave, whereas for higher angles, and stronger shocks, it leads, but in all cases the angle 
between the stem at the wall, and the wall, is less than 90". The consequence of this is 
that the flow behind the stem must have a flow component into the wall. Furthermore 
it is interesting to note that no slipstream is discernable, presumably because it is 
dispersed owing to the Mach stem being made up of a myriad of reflections from each 
of the solid elements between the slits. Unfortunately the presence of the unperforated 
edges of the model result in multiple images of both the reflected shock and the Mach 
stem which influences the accuracy of measurement. It has been assumed that the 
leading wave in such multiple images is that from the solid rib. 

For the larger wall angles in regular reflection (figure 4c,  d , f )  the point of reflection 
outstrips the corner signals, the front of which is clearly visible in the interferograms, 
and in these cases the only characteristic length associated with the phenomena is that 
of the slit width. The catch-up angle has not been specifically established but occurs 
with a wall angle in the region of 50". The section of the reflected shock wave which 
cannot be influenced by the corner is straight, and these circumstances are the closest 
to representing a truly pseudosteady flow, and thus being appropriate for shock polar 
analysis. However, for the regular reflection shown in figure 4(e)  the reflected wave is 
curved along its whole length. 

One of the questions that does arise is the influence that the flow underneath the 
plate can have on the flow on the upper surface. It is clear that if the pores are choked 
then perturbations from under the plate will not be able to influence the upstream 
flows; however, if they are not, then the wave transmitted down through the slit will 
transmit a wavelet back to the upper surface as it expands on reaching the under 
surface. This effect has been noted by Suzuki & Adachi (1987), Onodera & Takayama 
(1990a, b), and Adachi et al. (1992) for cases where the bottom of the slits is closed. 
In such cases a shock wave is reflected from the bottom of the slit and emerges into the 
upper flow. What is of importance, however, is that for regular reflection from high 
wall angles this secondary disturbance does not influence the behaviour at the point of 
reflection itself, owing to the finite transit time of the disturbance into, and back up, 
the slit, and the high-velocity flow behind the reflection point, although it does 
influence the flow a short distance behind the reflection point. For Mach reflection the 
flow behind the foot of the Mach stem is subsonic and these secondary lower-surface 
wavelets can influence the stem shape. Some evidence of this reflected expansion wave 
from the bottom of the slit re-emerging into the upper flow is visible just behind the 
Mach stem in figure 4(a).  For materials with randomly distributed pores this effect will 
become smeared throughout the flow, and a range of compressions and expansion 
waves with different arrival times will re-emerge to influence the flow. 

3.2. T h e j o w  below the plate 
The flow underneath the plate, between the transmitted wave and the lower surface of 
the plate is divided into two distinct regions (denoted as (iii) and (iv) in figure 5 )  by a 
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contact surface (C) made up of a series of vortices, the gas in region (iii) being that 
which has passed through the perforated surface. Examination of the interferogram 
shows that there is only one vortex per slit and not two as might be expected from 
consideration of the development of starting vortex rings during the impulsive starting 
of a flow through an orifice or nozzle. In the present case, as the incident shock diffracts 
into the slit the flow separates and rolls up into a vortex whose path should be very 
similar to that found in shock diffraction experiments (Skews 1967b) with the flow 
angle being dependent on the shock Mach number and wall turning angle. However, 
as the reflected shock from the far edge of the slit passes back over the vortex this will 
slow it down and the subsequent motion will be more in the direction of the slit (see 
figure 6). The existence of one emerging vortex rather than two is one of the indicators 
that the flow at the inlet to the plate is not normal to the surface, in a frame of reference 
fixed in the surface, as has been assumed in some previous work. 

With a sufficiently thin plate, and with the inlet flow having a velocity component 
in the direction of the incident shock motion it could be expected that at the exit the 
flow would retain a forward component with respect to the plate. This is a central 
assumption in Friend’s (1958) analysis where conservation of the tangential velocity 
across the plate is assumed, and is also an assumption contained in Li et al.’s (1995) 
analysis regarding conservation of tangential momentum. Since the vortex emerging 
from the plates gives an indication of particle motion, its trajectory will give an 
indication of the flow in its vicinity. It is noted that the vortex emerging from slit 20 
in figure 5 emerges slightly forward of the centreline of the slit, indicating a slight 
forward velocity with respect to the plate. However, there is a slight backward drift of 
the vortex centre relative to the slit from which it emerged, as it moves away from the 
plate. The vortex from slit 15 is almost directly opposite its source slit, and that from 
slit 10 has been dragged even further back. This backward movement is a bit surprising 
in view of the fact that the shear acting on the line of vortices from the flow in the 
adjacent region (4) flow is strongly in the opposite direction. However, in view of the 
relatively small magnitude of this drift it would appear to be acceptable in theoretical 
modelling to assume the flow to leave the lower surface normal to the face. Whether 
this would only apply to plates with slits and geometries which impose strong flow 
guidance, as in the present case, or is more generally true, has still to be established. 
A similar schematic given by Friend (1958) shows a forward drift, but in view of 
inaccuracies in that diagram this may not be intentional. In the present case there thus 
appears to be a fairly rapid turning of the flow within the slit, a turning which would 
probably be more gradual, if it occurs at all, in a more isotropic and homogeneous 
material. 

As the vortices move away from the plate they become less well defined and 
eventually vanish, although the interface between regions (iii) and (iv) remains easily 
distinguishable. The only differences between test conditions for figures 4 (c) and 4 (d)  
is the slit width. Note that the smoothing out of the discrete vortices occurs, for both 
cases, at the position of approximately the twentieth vortex from the shock position. 
The flow in the vicinity of the contact surface is clearly complex, because in addition 
to the shear the surface is convoluted owing to the presence of the vortices. Such a flow 
system cannot persist and must breakdown through mixing. In addition it is seen in 
the interferograms that there is a region of highly disturbed flow adjacent to the lower 
surface which is approximately of fixed width parallel to the plate, and thus appears 
to be the formation of the steady wake of the flow passing through the slits. The 
coalescence of a number of jets from multiple holes in close proximity has been noted 
before and is commented on by Ward-Smith (1971). In any event it can be expected 
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that as long as the pressure difference is maintained across the plate a steady flow 
situation with a fixed-geometry jet efflux will develop. It is expected that this would 
show as features parallel to the plate. 

Complex interactions of the shock wave occur within each of the slits as indicated 
in the second slit of figure 6, but on exit diffract into approximately cylindrical surfaces. 
Those moving into the ambient air soon merge to become the plane transmitted wave 
(T). This wave may also be regarded as being the result of the contact surface acting 
as a gas piston and pushing the wave ahead of it. Wavelets similar to those above the 
plate are evident in this region. The fringes also tend to show a zigzag-type pattern 
resulting from the expansion of these hemispherical fronts. The wavelets are weak and 
will move at a speed close to sonic velocity whilst at the same time being convected with 
the background flow in region (iv). The centres of these approximately circular 
wavelets tend to lie on the line of vortices, as is to be expected, but do not lie on the 
vortex arising from the same slit as the wavelet originated from because of the shear 
along the contact surface. 

The flow on the underside of the plate is slightly confounded by the reflection of these 
wavelets from the inner curved surface of the mounting frame. However, these wavelets 
are weak, as is evidenced by the minimal distortion they cause to the incoming 
wavelets, except where they conglomerate to form a reflected shock wave. This occurs 
sufficiently far from the measurements of the straight portions of the transmitted shock 
and contact surface so as not to influence the results. However, as will be noted later, 
the gradients caused by this series of small compressions can have the effect of curving 
the contact surface. 

It is apparent, particularly for small plate angles, that the wave is slowed 
considerably whilst it is passing through the slits, as the point of emergence of the wave 
on the underside of the plate is somewhat behind the point of entry. No attempts are 
made in this work to quantify this effect because the plate is too thin to obtain 
reasonably accurate measurements. 

4. Analysis 
Analysis is conducted in two frames of reference, which need to be clearly 

distinguished from each other. The one is the laboratory frame, where the plate is 
stationary, and velocities relative to the plate are considered. Such velocities will be 
denoted with asterisks as V*. The second frame is fixed in the point of shock 
disturbance (D) (see figure 7) moving along the upper surface of the plate, and thus for 
regular reflection is simply the point of reflection, whereas for Mach reflection it is the 
foot of the Mach stem. This is somewhat different from the usual transformation used 
for Mach reflection where the flow is defined with respect to the triple point. However, 
in the present case the triple-point motion has little relevance to the flows through the 
plate in the vicinity of point D. For both cases it is assumed that the wave patterns 
remain similar in time, and thus this second frame of reference will be referred to as 
the ‘steady’ frame since the flows in the vicinity of the point of disturbance remain 
invariant in time, although this is not an exact description since in the Mach reflection 
case the triple point is receding from the foot of the Mach stem. The transformation 
from one frame to the other is obtained simply by superimposing a velocity V’ (the 
velocity of point D along the plate), in the direction of the surface of the plate. 
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FIGURE 7. The flow geometry and definition of symbols for regular and Mach reflection. 

4.1. Analysis based on wave geometry 
It is assumed that all waves and the contact surface are straight and separate regions 
with uniform properties. Special treatment has to be given to the case of normal 
reflection since V’ becomes infinite. Simple one-dimensional analyses are applied in 
that case. 

For regular reflection 

M - -=-  V’ MI 

a, sin8,’ I)- 

where M ,  is the incident shock Mach number (laboratory frame), a,, is the sound speed 
in the gas ahead of the shock, and 8, is the shock incidence angle, and is the angle 
complementary to the wall angle. A correction has to be applied to the above equation 
in the case of Mach reflection. An estimate is made of the effective length of the test 
wedge from data such as that of figure 3 .  The above equation is then multiplied by the 
ratio xD/xo (figure 7), where x is measured from the effective apex. This correction is 
small and in all the tests conducted does not exceed 4 %  for lagging Mach stems and 
3 % for leading waves. Note also that measurements in the Mach reflection case are 
restricted to photographs with a significant length of Mach stem to enable the 
incidence angle on the plate to be measured with reasonable accuracy. MD is thus also 
the Mach number of the oncoming flow, parallel to the surface of the plate, in the 
steady frame of reference. 

The deflection of a streamline through an oblique shock wave is given by 

( M 2  sin2 8- 1)cot 8 
M 2  [i(y + 1) - sin2 01 + 1’ 

tan S = 

where y is the ratio of specific heats, and the Mach number on the downstream side 
by 

2 + ( y - l ) W s i n 2 0  
cosec (8 - S), 

2yM2 sin2 0- (y -  1) (3) 

where M is the oncoming flow Mach number and 0 is the angle of this flow to the shock 
wave. A single application of these equations across the Mach stem for Mach 
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FIGURE 8. Velocity triangles connecting the frames of reference. Velocities with asterisks are in a 
frame fixed in the plate, and the corresponding velocities without asterisks are in a frame fixed in the 
point D. 

reflection, and a double application for regular reflection, first across the incident shock 
and then across the reflected shock, using the measured shock angles at the wall, gives 
the steady flow magnitude and direction in region (ii) just above the plate. A 
corresponding single application across the transmitted wave gives the conditions in 
state (iv). Calculation of the sound speed ratios from 

then enables the steady flow velocities in each of the regions (i), (ii), and (iv) to be 
determined. 

The velocity triangles connecting the two frames of reference are shown in figure 8. 
Conditions in state (iii) are determined on the assumption that the flow at the exit from 
the plate is normal to the surface in the laboratory frame of reference (V;.) as inferred 
from the starting vortex motion, and parallel to the contact surface in the steady frame 
of reference (6). are normal to the incident and transmitted shocks, being 
the induced velocity behind a plane wave moving into ambient air. The magnitude and 
direction (c) of are the main parameters to be determined from the experimental 
results as they quantify the inflow into the plate. The current analysis does not assume 
that the flow directions in regions (iii) and (ii) are the same, nor than the inflow into 
the plate is normal to the surface, as has been done previously. 

and 

4.2. Analysis based on wavelet motion 

Further information about the inflow may be obtained from an examination of the 
behaviour of the wavelets. As discussed above, these shocklets are essentially acoustic 
fronts arising from the shock reflection off the far edge of each of the slits. After being 
generated they will distort and be convected with the flow depending on the 
surrounding temperature and velocity field. It is noted from the interferograms that in 
the vicinity of the wall the wavelets are not normal to the wall, thereby indicating a 
migration of the surrounding flow into the wall. The situation is illustrated in figure 9. 
Consider the shocklet generated when the main shock reflection point passes the edge 
of a slit at S. At the time depicted in the diagram the reflection point will have moved 



42 B. W.  Skews and K. Takayama 

FIGURE 9. The effect of wall inflow on the shocklet motion. The centre of curvature of the weak 
shocklet is convected from S to A as the shock reflection point moves from S to D. 

to D and the shocklet front will have moved outward to intersect the wall at B. 
Assuming that the flow in the vicinity of the wall remains at  the values determined 
above, the centre of the wavelet will move from S to A at a velocity Q, and along a 
path at an angle t to the wall. The distance SA is then Q t ,  where t is the time taken 
for the incident shock wave to move from S to D, and may be calculated knowing the 
shock Mach number and wall angle. The distances DS and BS are measured from the 
photographs with S being identified from the concentration of fringes due to the high 
density gradients at the inlet to a slit. From the above data the wavelet inflow angle /3 
may be determined. This is then compared with the measured values. Measurements 
were made using a transparent template with a series of concentric circles inscribed on 
it, and the circle best fitting the curvature at B used to determine the direction of BA. 
Note that no assumption has had to be made about the distance BA, which represents 
the local sound speed, as it is simpler and more accurate to determine the perpendicular 
to the shocklet at B than the radius of curvature. The method is subject to some 
variability: & 1" for the smaller wall angles where the wavelets are closer to being 
circular (see figure 4a), and up to +2" for larger angles (figure 4c) due to the shortness 
of the arc. Measurements were taken from three or four different wavelets arising from 
different slits between the 9th and 18th slit for each photograph, with the shock 
positioned typically at about the 30th slit, and the results averaged. These 
measurements were only done for the coarse model with 6 = 0.4. Similar calculations 
could be done for the wavelets behind the transmitted wave but are found not to be 
necessary because of the correlation between the contact surface angle and the flow 
angle determined from the transmitted shock slope as discussed below. 

In the case of normal reflection simple one-dimensional calculations are employed. 
The photographs are taken so that an undisturbed portion of the incident shock wave 
is visible. Knowing the velocity of the incident wave enables the absolute velocities of 
all other features to be easily determined by simply taking ratios of distances measured 
from the photograph. 

5. Results and discussion 
The effect that surface properties has on shock reflection phenomena is usually 

quantified by the comparison of incident and reflected shock angles. Figures 10(a) and 
lo@) show the results of the present tests for 6 = 0.7 and 0.4, compared with the 
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FIGURE 10. The reflection behaviour for (a) 6 = 0.7, and (b) 6 = 0.4. Solid symbols represent 

Mach reflection and open symbols regular reflection. 

experimental results of Smith (1945) for a smooth wall (shown by circles), the two- 
shock theory of von Neumann (1 943), (corresponding to a wall with zero porosity and 
inflow), and the theoretical solution for a sonic reflected wave (corresponding to unity 
porosity and complete inflow corresponding to that behind the incident shock). This 
latter limiting case is made up of two components, the first (lower incidence angles) 
corresponding to supersonic flow behind the incident shock relative to the reflection 
point and the reflected wave simply being a Mach line in this flow, and the second being 
for subsonic flow where the reflected acoustic wave consists of a semicircular front 
behind the shock, intersecting it at  a position described by Skews ( 1 9 6 7 ~ ) .  It should be 
noted that the presentation of the present results is different from that usually 
employed in that the shock angles in Mach reflection are measured with respect to the 
wall rather than with respect to the triple-point trajectory. This is because the current 
concern is with the inflow at the wall which is controlled by the angle of the foot of the 
Mach stem, and thus the triple-point trajectories were not determined, and because the 
issue of transition has already been dealt with by Onodora & Takayama (1990~).  

As expected for regular reflection, the results lie between the impervious-wall case 
and the sonic reflection limit, and the result of the wall permeability is to lower the 
reflection angle. Because of the close proximity between the zero inflow and complete 
inflow limits shown by these figures, particularly for the weaker incident waves, it is 
evident that it will be experimentally difficult to accurately determine the effect of 
porosity based on wave angle measurements. It is largely because of this that the 
present results show no detectable difference between the coarse- and fine-slit test 
models (porosities of 0.4 and 0.33). Kobayashi et al. (1995) have shown that for an 
open-pore rubber with a porosity of 0.98, the results lie very close to the sonic reflected 
wave limit. Li et al. (1995) have successfully correlated these results and those of Skews 
(1994), which were for relatively thick specimens of the order of tens of pore diameters, 
with their theory. Unfortunately their theory depends on a knowledge of the tortuosity 
of the material, which is not a pertinent concept in the present context. 

For the impervious-wall tests there is quite a marked change in the slope of the 
reflection curve at transition to Mach reflection. This change is not apparent for the 
perforated surface. Because of the complex unsteady flow field close to the wall, with 
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FIGURE 1 1 .  The variation of the inflow angle for the coarse model. 

a length scale corresponding to the slit size, it is not possible to define transition as 
distinctly as for a smooth wall and it could therefore be expected that the change from 
the one type of reflection to the other would be more gradual. It is interesting to note 
from figure 10 that for a large portion of the Mach reflection regime, particularly as 
glancing incidence is approached, there is no significant difference between solid and 
perforated walls. It is clear that all the results, no matter what the wall condition, must 
converge to the theoretical value for an incidence angle of 90", since the reflected wave 
must then be an acoustic wave, and its geometry will be as given in Skews (1967~). 

The direction of inflow into the wall is shown in figure 11. Notwithstanding the 
sparsity of data in the region of transition owing to the difficulty in measuring the angle 
of the Mach stem when it is short, it is interesting to note that the value of e (figure 8) 
is continuous across transition, remembering that the method of calculation is different 
for the two cases : for Mach reflection the deflection is determined across a single shock, 
whereas for regular reflection the calculation is across two shocks. The most striking 
result evident in this figure is that over a large range of wall angles the flow direction 
into the wall is shallow and constant (about 17" for wall angles from zero to nearly 
60"). This is in marked contrast to the assumption in some previous theoretical work 
that the inflow is normal to the wall. Thus these theoretical models need to be treated 
with considerable caution. The experimental curve is independent of Mach number for 
the Mach numbers tested and is also not affected by the differences in porosity of the 
test models used. The results are not shown for the fine model since the results could 
be expected to be the same as the coarse model as the wave geometries are the same 
(figure 10). It is pertinent to note that for plane-shock diffraction around a convex 
corner (Skews 1967b) which corresponds to the present case for Ow = 0" and a turning 
angle of 90", the slipstream (separation) angle, which corresponds to the angle of the 
flow into the slit, is of similar magnitude to the inflow angle found above. Also for 
diffraction of a shock with 6 = 0.4 over corners from 45" to over 90" the flow separates 
along a streamline at an angle of between 12" and 20". Whilst the situation is not quite 
the same since the incident shock is inclined to the surface of the plate in the present 
case, it appears that the induced flow behind the successive diffractions at each slit 
could be due to the slipstream angle resulting from the diffraction. More detailed 
experiments at larger scale would be needed to establish separation angles for 
diffraction into a branched duct when the incident wave is inclined. The flow conditions 
that may prevail at a surface with non-uniform and randomly distributed pores 
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FIGURE 12. The magnitude of the inclined inflow velocity, and its component normal to the plate. 

Solid symbols represent Mach reflection and open symbols regular reflection. 
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FIGURE 13. The wavelet angle as determined by the two independent methods of calculation. 

requires further study, but it is evident that assumptions regarding the inflow direction 
should not be made, either in theoretical nor experimental studies. 

The magnitude of the inflow velocity, e, is shown in figure 12. The major point of 
note is that maximum velocities are reached in the vicinity of transition, with a fairly 
marked drop on either side, and with higher velocities being associated with higher 
incident Mach numbers. The component of this velocity normal to the plate, v;, is also 
shown. This is much less variable than c, particularly in the case of regular reflection 
beyond the catch-up angle (z 50") where it is almost constant, and thus the change in 
the inflow velocity is brought about primarily through the change in the component 
parallel to the plate, u t .  For lower wall angles, changes in the values of v t  are matched 
by proportional changes in u;, leading to the constancy in E .  

The results from the independent wavelet-motion method of inferring inflow 
conditions, and which does not depend on shock geometry, are given in figure 13. 
From a wall angle of about 45" upwards the results agree very well with the results 
determined from shock-wave angle measurements, but for low wall angles there is a 
significant difference of about 4". The essential difference between the two methods is 
that one is calculated from the shock reflection conditions and thus should be valid 
immediately behind the shock reflection point, whereas the other is from wavelet 
geometry well behind the reflection point. The agreement for the larger wall angles is 
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FIGURE 14. Variation of the angle of the transmitted shock wave. Solid symbols represent 
Mach reflection and open symbols regular reflection. 

not unexpected, particularly for wall angles beyond the catch-up angle. The reflected 
shock is plane and the flow between it and the wall will be uniform except for the 
small perturbations due to the wavelets, and thus any method of measurement of 
inflow within this region should give similar results. Unfortunately the fringes in the 
flow do not help with this interpretation since what appear to be multiple fringes are 
simply the same fringe between successive wavelets. On the other hand, for the Mach 
reflection situation there are a number of factors which could contribute to a change 
of inflow conditions well behind the shock compared to those immediately behind the 
foot of the Mach stem. For short Mach stems there is a discontinuity in shock slope 
at the triple point, and even though a slipstream is not apparent there must be a 
gradient of properties which propagate down to the wall. For longer stems such as 
those shown in figures 4 (a)  and 4 (b) the stem is curved and thus the properties behind 
are variable as can be seen from the fringes in figure 4(a). It must thus be concluded 
that the inflow will change in Mach reflection down the length of the wall and the data 
for p presented in figure 13 are an average value dependent on the positions where the 
measurements were made. During the measurements for a specific test there was an 
indication that the value of /3 decreased as the measurement point moved away from 
the foot of the Mach stem in accordance with the above conclusion, but the accuracy 
of measurement and variability in wavelet shape do not allow this to be stated with any 
confidence, and the averaging described in $4 hides the variability. 

The above discussion concerns results which may be obtained from consideration of 
the flow above the plate alone. A similar approach will be applied to the flow under 
the plate, and then the flow conditions across the plate will be dealt with. Thus the 
flows in regions (iii) and (iv) may be obtained, on the assumptions that the flows in 
these regions also are uniform, that in the steady frame of reference the flows in both 
regions are parallel to the slipstream, and that the slipstream cannot sustain a pressure 
difference. 

The angle of the transmitted shock is given as a function of the incident shock angle 
in figure 14. If there were no attenuation across the plate, the reflected wave would be 
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FIGURE 15. The contact surface and vortex street angle as measured from interferograms, and as 

calculated from the transmitted shock wave angles. 

a sound wave and the transmitted wave angle would be the same as the incident angle 
for the case of regular reflection. The small deviation for this case is thus an indication 
of the small loss across the plate. (The same conclusion cannot be reached for Mach 
reflection since the strength of the foot of the Mach stem does not correspond to that 
of the incident shock.) Thus even for plates with substantial blockage such as in these 
tests (60 % for the coarse model, even without taking the vena contracta into account) 
there is still substantial inflow, and the processes near the reflection point at the surface 
may not be influenced much by viscous effects. The diffraction process into the slits also 
involves little loss as is confirmed by the success of the inviscid Euler equation solutions 
for such a process. These factors may be part of the reason for the success of the 
theoretical model of Li et al. (1995) in predicting reflection from porous materials. 

It is also noted that the transmitted wave resulting from Mach reflection on the 
upper surface is relatively less strong than for regular reflection, as evidenced by the 
lower slope of the experimental curve, because of the reduced mass flow through the 
plate resulting largely from the more glancing impact of the shock. The Mach stem 
does not bend strongly forward to be normal to the surface as it does for an 
impermeable plate; in fact in many cases its strength is close to that of the incident 
wave due to the interaction with the expansion waves arising from the slits. As will be 
shown, the pressure driving the gas through the plate is less and the transmitted wave 
consequently weaker. It is this reason that also accounts for the reduction in inflow 
velocity noted above. There is some evidence of a difference between the coarse and fine 
plates as would be expected, but this is only significant at the highest Mach number 
tested. Thus a much wider range of blockage areas would need to be tested in order to 
find the effect of porosity. 

Treating the transmitted wave as an oblique plane wave in a steady flow enables the 
conditions in state (iii), figure 5 ,  to be determined. For the Mach reflection case it is 
assumed that the disturbance moves up the plate at the Mach number M D  as described 
previously. In the steady frame of reference the flow in region (iii) should be parallel 
to the contact surface. Figure 15 shows the correlation between the measured contact 
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FIGURE 17. Outflow velocity normal to the plate. 

surface angle 6, (figure 7) and that calculated from the transmitted wave angle. The 
correlation is good considering the accuracy with which the angle can be estimated in 
the interferograms, and thus the assumption that region (iii) is uniform appears to be 
valid. For the low Mach number tests, and with Mach reflection, it is found that the 
contact surface is not straight, with the angle increasing slightly further away from the 
reflection point. This may be due to non-uniformity of the inflow as discussed 
previously for this case (figure 13), or possibly to the influence of the wavelets reflecting 
off the bottom of the plate holder. Since the transmitted wave angle can be measured 
much more accurately than the contact surface angle, the angle 6, determined from the 
transmitted wave is used in further calculations. The variation of this angle with the 
wall angle is shown in figure 16 for the coarse test plate, and this plot also indicates a 
maximum value in the region of transition. However, because of the effect of the wall 
angle, this does not imply a maximum in the velocity exiting the plate. This latter value 
is given in figure 17, which shows an approximately continuous increase in exit velocity 
in the laboratory frame, normal to the plate, as the plate angle increases, combined 
with increasing velocities as the strength of the incident shock is increased. 

In the current tests the aspect ratio of the openings (ratio of width of opening to 
thickness of plate) is about four times larger than in Friend’s (1958) tests. The geometry 
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of the surface holes will clearly have an effect on the flow through the plate and this 
would need to be established for a surface made up of randomly distributed pores. For 
the thin plate that he used Friend assumed that the tangential velocity is conserved 
across the plate and the agreement he obtained with his experiments tends to support 
this assumption, whereas in the current tests the experiments show that the flow leaves 
normal to the surface. The resultant tangential momentum change must thus exhibit 
itself as a tangential force on the plate. Further measurements will be required to 
establish the boundary conditions that need to be applied in the more general case of 
a surface with randomly distributed pores. 

The evaluation of the experimental data presented up to this point has resulted in the 
velocities on either side of the plate being determined. Similar calculations across the 
shocks also enable the pressures on either side of the plate in regions (ii) and (iv) to be 
found, and hence the pressure ratios for considerations of choking, and the pressure 
differences for considerations of flow resistance. 

The pressure ratios across the plate (with respect to the stagnation pressure in region 
(2), in the frame of reference fixed in the plate) are shown in figure 18. Compared to 
the isentropic choking value of 0.528 it would appear that the flow is choked for the 
regular reflection results for both the = 0.4 and 0.5 cases but not for 0.7. Under Mach 
reflection conditions the critical pressure ratio is not reached at the smaller wall angles 
for any of the tests but as the wall angle increases choking can occur. The visual 
evidence of choking identified in the tests done by Friend (1958), namely the typical 
oblique-shock diamond pattern of an over- or under-expanded supersonic nozzle, and 
the existence of a upward-facing auxiliary shock in the downstream flow, are not visible 
in the current tests, possibly because the slits in the present tests are less than 20 % of 
the width of the openings in Friend’s results, and the opening width to plate thickness 
ratio is four times larger, resulting in the pattern breaking down before emerging into 
the visible flow region. Based on the sketch of figure 6 the sonic throat of the choked 
flow will be well into the slit at the position of the vena-contracta of the separated flow. 

Friend proposed a simple theory for regular reflection from a perforated plate under 
choked conditions based on two-dimensional shock theory and the boundary condition 
that the component of the Mach number normal to the plate (in the steady flow frame 
of reference) is sufficient to result in sonic flow as determined by the area ratio of the 
plate. On this basis he defined a discharge coefficient as the ratio of this Mach number 
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as inferred from the measured shock reflection angle to that calculated from the plate 
area ratio. It is thus essentially a measure of the vena contracta effect. Discharge 
coefficients of about 93% were obtained for his tests with strong incident shocks 
(shock pressure ratios of between 3 and 10). However, for the few tests reported for an 
incident inverse shock pressure ratio of [ = 0.5, and a 60" wall angle the value had 
fallen to just less than 70%. Using the same assumptions on the present tests gives 
coefficients of 0.62 to 0.54 as the wall angle changes from 50" to 80" for [ = 0.4, and 
about 0.5 for [ = 0.5. This is also similar to the coefficient value of 0.54 determined by 
Onodera & Takayama (1994) in a slightly different way and using the static pressure 
in region (ii). 

Unfortunately data for vena contracta areas for compressible flows with angled 
inflows are not available to compare with these data. For an axisymmetric orifice in a 
pipe the effects of compressibility are dealt with by Ward-Smith (1971) and some of 
these are pertinent to the present case. For a sharp-edged orifice with separated flow 
a simple process of choking does not apply since sonic conditions occur at the vena 
contracta, whose area can change as the boundary conditions change. Thus for fixed 
upstream conditions, once the flow has choked the vena contracta area increases and 
moves up towards the inlet for further decreases in back pressure. A similar situation 
of a range of back pressures for a 'choked' flow is expected to occur in the present case 
even though separation only occurs on the one wall. The effects of wall thickness to 
opening size ratio, and of porosity, for incompressible flows have been dealt with by 
Ward-Smith and although similarities with compressible flows may exist insufficient 
data are at present available to make meaningful comment. A range of special tests 
would be required to ascertain the effects of geometry, particularly for the interesting 
case of randomly distributed pores. In addition theoretical models assume that the 
porosity is uniformly distributed, and that there is no influence of pore size. The work 
of Adachi et al. (1992) is the strongest indicator that this will only be a reasonable 
assumption if the incident wave has propagated a distance of about 100 times the pore 
dimension. 

A similar lack of data on loss coefficients makes it difficult to assess the frictional loss 
through the grid, although from the evidence discussed earlier it appears to be small. 
Idelchik (1994) is the only work found which treats flow through a grid of rectangular 
bars with an angled inflow and a perpendicular outflow, thus corresponding to the 
geometry of the current tests, although it is limited to incompressible flow. The loss is 
represented as 5 = 2Ap/pw2 = g1 crz where w is the downstream velocity, p the fluid 
density, and v1 and g2 are empirical coefficients, the first of which depends on the 
inclination of the flow and the second on a combination of the inclination and the 
openness ratio of the packing. No correlation with the current tests is evident, 
primarily because his data cover inflow angles up to 60" from the perpendicular only 
and at that value r2 becomes unrealistically large. However, it would appear from the 
data on transmitted wave strength, and the success of inviscid computational codes, 
that the reflection and transmitted wave patterns are largely affected by the separation 
pattern resulting from the shock-wave diffraction into the slit, and the vortex that is 
developed. Comparing Friend's data with those of the current tests also shows that the 
length to width ratio of the slit is an important factor, as it is for incompressible flows 
(Ward-Smith 1971). 
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6. Conclusion 
Detailed characterization of the flow fields following impact of a shock wave on an 

inclined perforated plate have shown that shock reflected angles are depressed 
compared to an impervious wall, and the flow into the plate for wall incidences up to 
about 60" is strongly inclined to the surface, whereafter the angle of flow to the surface 
steadily increases until it becomes normal to the plate for head-on reflection. The 
magnitude of the inflow velocity reaches a maximum in the region of transition from 
regular to Mach reflection, and, in the case of Mach reflection, appears to vary along 
the plate. The flows in the vicinity of the plate are complex and require further study 
in order to establish the effects of pore geometry. Treatment of the flow using 
pseudosteady assumptions appears to be satisfactory, particularly for the case of 
regular reflection. 

The current experimental evidence shows that assumptions made in previous 
theoretical work are not satisfied. The discrepancies are in two areas. Firstly, it is not 
uncommon in theoretical approaches to assume that the inflow at the surface of a 
porous wall is normal to the wall. This assumption is clearly invalid for the present 
tests, and more work will be required to establish what surface features may influence 
the inflow. Such tests are under way. Secondly, it is sometimes assumed that the 
tangential component of momentum is conserved across the surface. Again this is 
shown not to be true, and in the current tests may be due to the thickness of the plate 
and the resulting guidance given to the flow as it passes through. 
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